Research Project Descriptions

Analysis of TAD calling Algorithms for Hi-C Data Analysis

Student Name: 
Eric Tang
UCD Department: 
Biochemistry and Molecular Medicine
UCD Mentor: 
Fereydoun Hormozdiari,

Hi-C, a form of chromosome conformation capture (3C), is a method that is used to create an accurate 3D model of the genome using methods that reveal chromatin structures. However, Hi-C data alone is not enough to produce a stand alone model. Processing steps involving various algorithms are necessary in order to use the read pairs within the Hi-C data to generate the most accurate images of chromatin interactions and topographically associating domains (TAD). The specifications of each of these algorithms, and the disparate results they produce as a result thus require further research. Research within the Hormozdiari lab used statistical and qualitative analyses to look at the different TAD’s produced by the algorithms Arrowhead, Armatus, HiCseg, TADtree, TADbit, InsulationScore, and DomainCaller in order to assess which of them was the most accurate and effective. Although the results of the research revealed the differences in the size, shape, and proximity of the TADs that were found by the algorithms, concrete conclusions regarding the accuracy of the algorithms could not be made

The Q324H Variant of the DNA Repair Glycosylase MUTYH May Predispose CRC

Student Name: 
Garrett Ma
UCD Department: 
Department of Chemistry
UCD Mentor: 
Dr. Sheila David

MutY is a bacterial DNA repair glycosylase that cleaves a mismatched adenine across the oxidatively damaged guanine base, 8-oxo-7,8-dihydroguanine (OG), via base excision repair (BER). Unrepaired DNA damage may cause disease-inducing mutations, including changes in transcription regulation or a resultant translated protein. When germ-line mutations occur in the gene of the human homolog, MUTYH, it can lead to a condition called MUTYH associated polyposis (MAP), a colorectal cancer (CRC) subtype. Some variants associated with MAP exist in the interdomain connector (IDC) that joins the N-terminal domain responsible for catalysis to the C-terminal domain necessary for OG recognition. The Q324H variant is located in the IDC in a critical binding domain of several downstream repair proteins. Initial studies with this variant demonstrated reduced OG:A repair in vivo yet maintains wild type (WT) activity in vitro. In this study, we employ the mouse Mutyh homolog of Q324H, Q306H, to better characterize Q324H activity due to difficulties in assessing human MUTYH activity in vitro. Although these studies with the mouse homolog variant may also show WT OG:A repair in vitro, due to the location of this variant in the IDC, it’s CRC association may be caused by perturbations in downstream repair.

Investigating the spatial and temporal response of tomato fruit to oxidative damage during postharvest chilling injury

Student Name: 
Gurpaul Basra
UCD Department: 
Department of Plant Sciences
UCD Mentor: 
Dr. Diane Beckles

One of the most frequently used and effective methods to preserve postharvest produce is low temperature management. Refrigeration of fruits and vegetables is beneficial as it can prolong shelf life as well as maintain the overall quality of the product; however, tropical and subtropical produce often do not reap the same benefits as they are not suitable for lower temperatures. These fruits, vegetables and herbs are negatively impacted by low temperature storage, a disorder called postharvest chilling injury (PCI). Tomato fruit represents an important part of human diet, and is also susceptible to PCI, which manifests as a series of physiological, biochemical and molecular changes, such as alterations in the  redox state of the cell (reactions involving the transfer of electrons) and the production of reactive oxygen species (ROS). The accumulation of ROS to toxic levels is harmful to the cell and can accelerate its overall rate of deterioration. Although PCI has been studied for more than 200 years, the development of oxidative damage caused by ROS has not been extensively characterized in the different tissues that compose a tomato fruit. This article will investigate  two different parameters associated to oxidative stress during postharvest cold storage in the columella and pericarp tissues of cherry tomatoes.

Localization of Plant Pathogen Effectors and Plant Innate Immunity

Student Name: 
Hilal Morrar
UCD Department: 
Department of Plant Biology
UCD Mentor: 
Savithramma Dinesh-Kumar

The world loses some food crops to pathogenic infections, and investigating how pathogens infect plants would help reduce how much crop is lost. In turn, this leads to the development of new pesticides and pathogen resistant plants. Plants have two main defense systems, which are Pattern Triggered Immunity and Effector Triggered Immunity. The first system includes the plant’s receptors on the outside that trigger the immune response after detecting a pathogen effector. These extracellular receptors act like plants first layer of defense against invading pathogen. Pathogens have evolved sophisticated means to compromise this primary layer of defense by delivering effector protein inside the plant cells. Plant employ a second layer of defense through intracellular Nuclear Binding - Leucine Rich Repeat (NLR) receptors that direct the Hypersensitive Response after detecting an effector. In nature, these effectors are injected into a plant host cell via the Type Three Secretion System. The secretion system complex protrudes out of the bacterial cells and is comprised of a transmembrane base and a long, narrow needle to directly release effectors into a host. Here we explore the localization of these effectors using confocal microscopy. We engineered effector proteins fused to a fluorescent protein by molecular cloning, resulting in a chimeric protein that was delivered into tobacco leaves through Agrobacterium mediated transformation.  Our data reveals that the pathogen effectors localize to the plasma membrane, chloroplast, and mesophyll cells of the tobacco plant leaves.

Biocatalyst Discovery for the Chemoenzymatic Synthesis of Lacto-N-Tetraose

Student Name: 
Ivy Tang
UCD Department: 
Department of Chemistry
UCD Mentor: 
Xi Chen

Researchers desire an affordable synthetic route for forming human milk oligosaccharides absent in cow milk to study their functions and incorporate them into infant formula. These compounds are believed to provide the protective properties of human milk for preterm infants from necrotizing enterocolitis and other diseases. Many of these compounds can be synthesized with purified enzymes and substrates or microbial cells engineered for their production. However, those containing Galβ1-3GlcNAc linkages, such as lacto-N-tetraose, are generated in low yield and are expensive due to the lack of a encoding β1-3-galactosyltransferase known to express well in suitable hosts. Eight genes encoding β1-3-galactosyltransferases were unsuccessfully cloned into pET-22b(+), an E. coli expression vector. If successful, the vector would be transformed into E. coli BL21(DE3) cells. Enzyme expression titers, optimal reaction conditions, and catalytic properties of the β1-3-galactosyltransferase will be determined. The most suitable enzyme will then used in the total enzymatic synthesis of lacto-N-tetraose from lactose with excellent yield. Affordable synthetic procedures for the preparation of human milk oligosaccharides such as lacto-N-tetraose may lead to improved baby formulas that reduce infant mortality rates.

The Significance and Misforecast of the 15 May 2018 New England Severe Thunderstorm Outbreak

Student Name: 
Jacob Feuerstein
UCD Department: 
Land, Air, and Water Resources
UCD Mentor: 
Dr. Kyaw Tha Paw U

The severe thunderstorm outbreak of 15 May 2018 devastated large portions of the Northeast with huge swaths of damaging wind up to 110 mph and a dozen tornadoes up to EF2 in strength. Five people were killed and 1.4 billion dollars in damage were caused by the event, making it among the costliest and deadliest severe thunderstorm outbreaks in the history of the Northeast. However, the storm prediction center (SPC) failed to forecast the severity of the event in the days before it occurred, potentially leaving many residents of impacted areas uninformed of the dangerous conditions soon to occur. This case study attempts to answer both why this event was relatively severe and why the SPC failed to forecast the event’s severity. This was accomplished by analyzing synoptic conditions, significant mesoscale events, and model data associated with SPC forecasts. The outbreak was also compared to a previous significant Northeastern outbreak that occurred on 31 May 1998. The current analysis concludes that the severe weather event was an unusual combination of an elevated mixed layer and very high wind shear, due to a split stream pattern (in which the jet stream branches into two different components) and a 700mb trough over the West Coast. This is a synoptic setup that matches the one in 1998 very closely. Model and NWS text data suggests that ample evidence of incipient severe weather existed preceding the event, implying that the SPC could have forecast its severity. It was also determined that the event should be classified as a derecho using procedures outlined in Johns and Hirts, 1987. The split stream setup, when taken with its similarity to past significant severe outbreaks over the Northeast, introduces a better understanding of Northeast severe weather that can aid in forecasting of severe thunderstorm potential.

GESI Constructs in PDGFR-N-ARCLIGHT Scaffold

Student Name: 
Janet Han
UCD Department: 
Department of Biochemistry and Molecular Medicine,
UCD Mentor: 
Lin Tian

The recent increase in the number of behavioral diseases with neurobiological bases has increased the effort to find biosensors to monitor neural connections in the brain. Neural biosensors may be used to monitor brain disease progression by tracking neural activity. Current neural biosensors, such as the genetically encoded calcium sensors (Li, Q. et al.) lack the ability to show how frequently the neuron is firing because calcium levels do not have perfect correlation to neural activity. However, neural activity can be tracked by monitoring the activity of potassium ion channel proteins because action potentials rely on these channels to re-polarize the membrane. By cloning a specified peptide (termed GESI, genetically encoded small illuminant) into the potassium ion channel (Kv2.1) protein that activates the dye bromocresol purple (BCP) upon exposure a biosensor that can track neural activity can be created. The peptide will be cloned in an area that will only be exposed to the BCP in solution when the potassium ion channel is active. As a pilot experiment, the Tian Lab at UC Davis has identified several GESIs that can be cloned into PDGFR-N-Arclight, a smaller and easier to manipulate voltage sensitive protein. While this experiment does not directly clone GESIs into the Kv2.1 voltage-gated potassium channel, the PDGFR-N-Arclight scaffold does provide the possibility of developing a voltage-sensitive biosensor used for tracking neural activity due to its similarities to Kv2.1. Furthermore, the PDGFR-N-Arclight scaffold provides insight into how to achieve a Kv2.1 based biosensor.

Metabolites Produced from Bifidobacterium Consumption of Breast Milk Oligosaccharides Suppress the LPS Induced Inflammatory Response in Macrophage Cells

Student Name: 
Jason Own
UCD Department: 
Anatomy, Physiology & Cell Biology
UCD Mentor: 
Dr. Helen Raybould

Macrophages play a key role in maintaining adipose tissue homeostasis, yet recently these cells have become extensively associated with adipose tissue inflammation upon the development of obesity, a disease that affects 2.1 billion people in the world today. In response to the chronic lipid overloading of adipose tissue during the development of obesity, adipose tissue macrophages increase in number and change their localization. This newly attained knowledge shifts medical approaches away from targeting the inflammatory traits of adipose tissue macrophages, towards targeting their metabolic programming. Mediations directed at increasing metabolic capacity might be used to reprogram macrophage metabolism, allowing macrophages to better deal with metabolic challenges during obesity, in order to maintain adipose tissue homeostasis. Taking this into account, the aim of this study was to determine which metabolites produced by Bifidobacterium grown on specific milk oligosaccharides will suppress inflammation induced by the inflammatory stimuli, LPS, in macrophage cells. RAW-Blue cells, a macrophage-like, Abelson leukemia virus transformed cell line derived from BALB/c mice, were cultured and exposed to various Bifidobacterium supernatants produced from Bifidobacterium consumption of lactose, bovine milk oligosaccharides, 2'-Fucosyllactose, and 3'-Sialyllactose. These cells were then induced with LPS, activating the transcription factor, NF-kB. Upon activation of NF-kB in these RAW-blue cells, a secreted embryonic alkaline phosphatase was secreted into the cell supernatant. After overnight incubation, a QUANTI-blue macrophage inflammatory assay was executed in order to detect the levels of alkaline phosphatase. This study provides the first evidence that high concentrations of lactose and 2-FL metabolites were found to significantly decrease NF-kB activation. Therefore, it was concluded that metabolites produced from Bifidobacterium consumption of lactose and 2-FL suppress the LPS induced inflammatory response in adipose tissue macrophages.

volutionary history and genetic basis for elongated posterior spiracles in cactophilic Drosophila species

Student Name: 
Jerry Liu
UCD Department: 
Population Biology, Evolution and Ecology
UCD Mentor: 
Dr. Susan Lott

Developmentally constrained traits are robust to perturbations, including genetic change, environmental change, and internal noise, likely because variation may be detrimental to the organism. However, the interactions between genetic and environmental perturbations and developmental variation are poorly understood. Can traits that are essential for the proper development of the organism change over evolutionary time? If so, do they change in small frequent steps or rare big jumps? In this paper, the evolutionary history of the posterior spiracles in twelve cactophilic Drosophila species spanning about 20 million years of evolution is examined. Position of each abdominal segment was determined at the 1st instar larval stage from each of the species using denticle belts as a proxy. The positions of the denticle belts were measured in proportion to the entire larval body length and analyzed using linear models. The results show that robust traits do evolve, as there are small but significant changes in body plan within the group of cactophilic species, and larger differences between cactophilic and non-cactophilic species. All cactophilic species examined in this paper were shown to have significantly longer posterior spiracles than that of the outgroup species, suggesting that this trait may have arisen as an adaptation to the desert climate. Finally, when comparing the segment position of each species to the mean segment position, it was found that closer segments tend to shift together, which suggests that the genetic changes underlying the observed segment position changes may lie in the late embryonic stages.

Effect of Differences of Shell Thickness and Pressures on the Cracking of Grapes

Student Name: 
Justin Semelhago
UCD Department: 
Department of Plant Sciences
UCD Mentor: 
Kenneth Shackel

Grape splitting has affected the grape and wine industry greatly. Thousands of dollars are spent yearly to cover the cost of grapes that split because they cannot be sold to the consumers or wine companies. Past research only indicates that cracking could be a cause of unevenness of skin surface or the irregularities of pressures within the grape. To inhibit cracking, grapes were spray-painted with white dots randomly on the surface and were then placed in water with randomly spray-painted white dots and analyzed over time. The analysis process consisted of running the images taken of the grapes through MATLAB to produce eigenvalues. The eigenvalues track the percent movement of a centroid of three white dots over time. The eigenvalues were then plotted using SAS and patterns were drawn from the graphs. It was found that eigenvectors in the cracking area were growing in a nonuniform way the moment before the crack. The eigenvectors would become larger in both directions indicating an increasing strain adjacent to where the crack would eventually form. Eigenvectors that were not directly beside the crack but in the cracking area showed a decreasing strain perpendicular to the crack. However, within the same eigenvector there would be an increasing strain perpendicular to the crack. This is caused by the crack pushing the centroids of the dots closer to other dots on the same side of the crack which could be a result of either differences of pressure in that area or an unevenness of skin thickness. 

The Location of Mesoporous Silica Nanoparticles Over Time in Mouse Lungs Following Acute Inhalation

Student Name: 
Krysta Zmich
UCD Department: 
Center for Health and the Environment
UCD Mentor: 
Kent E. Pinkerton

Mesoporous silica nanoparticles (MSNs) are a new and effective method of drug delivery in the body, with the ability to be tailored for continuous or triggered drug release. Past research has shown MSNs to be highly efficient at targeting specific cells in the body, with greater specificity  than chemotherapy treatments for cancer. Previous research has also shown that once MSNs are taken up by the body through inhalation, the particles do not leave the lung one (1), seven (7), and twenty one (21) days after exposure. To identify the location of MSNs in the lung once inhaled, and the potential consequences of these MSNs on the body, immunofluorescent staining of the lung epithelium coupled with confocal scanning fluorescence microscopy was done to identify the precise nature of MSN uptake and retention in the lungs over a period of 21 days post-exposure. Researchers at the Center for Health and the Environment at UC Davis had previously exposed mice (n = 53) to MSNs and removed the lungs for histological sampling. These lung samples were embedded and sectioned for staining and subsequent confocal microscopy imaging. To determine the cell type associated with MSNs, staining with antibodies for CDH1 (epithelial cell surface protein), CD11c (macrophage and dendritic cell surface protein) and Siglec F (macrophage specific surface protein) was performed. No MSNs were found to be present in the epithelial cells of the lung, but instead were found in cells outside of the epithelium and in the airspaces of the lungs. This suggests MSNs are most likely uptaken by cells of the immune system, macrophages or dendritic cells. Future investigation is needed to confirm this theory

Characterization of Breast Cancer Cells Growing on Mitochondria-Driven Metabolism

Student Name: 
Lindsay Tao
UCD Department: 
Department of Molecular Biosciences
UCD Mentor: 
Cecilia Giulivi

Intra-cell heterogeneity in breast tumors may confer resistance to conventional cancer treatments. Certain types of cells may be resistant to a certain treatment, thus allowing cancer to persist. We hypothesized that the heterogeneity of  cancer cells can be evidenced in multiple ways, including the identification of discrepancies in their metabolic processes. To this end, we sought to select and characterize a subpopulation of cells that only utilize mitochondrial metabolism to obtain energy from fuels. Adenocarcinoma breast cancer cells (MDA-MB-231) were grown in a galactose or glucose media. The cells in galactose were selected for the ability to use mitochondrial metabolism, while the cells in glucose served as the control. Cell proliferation, phosphorylating capacity, and markers for differentiation, pluripotency, and metastasis were evaluated in cells grown in galactose versus those in glucose. Cells grown in galactose (cells that rely on mitochondrial metabolism including fatty acid oxidation) were found to proliferate slower, have higher ATP production, and were less pluripotent and less differentiated. Thus, breast cancer cells which were forced to generate ATP from mitochondria displayed unique morphological and metabolic characteristics that seem to include a transition towards stemness.

Studies Towards a Synthesis of 4,10,15-(1-4)tristetrafluorobenzena- 1,7-diazabicyclo[5.5.5]heptadecaphane, a Potential Macrobicyclic Fluoride Receptor

Student Name: 
Matthew Nemeth
UCD Department: 
Department of Chemistry
UCD Mentor: 
Mark Mascal

The detection and monitoring of chemical levels in bodily and environmental systems is a growing objective in the field of synthetic chemistry, following the increasing ability of scientists to synthesize specific chemical receptors. Most artificial anion receptors target phosphate ions or a range of the larger halides: chlorine, bromine, and iodine. This report describes progress in the synthesis of a macrobicylic molecule as well as a macrocyclic intermediate that could act instead as a fluoride receptor. The feasibility of synthesis of 1,4-Bis(carboxymethyl)-2,3,5,6-tetrafluorobenzene 1,4-Bis(cyanomethyl)-2,3,5,6-tetrafluorobenzene were verified with moderate yields, but more time is needed to synthesize 1,4-Bis(ethylamine)-tetrafluorobenzene and carry out the full macrocyclization.

Comparing and Contrasting the Aspects of PCR and Taqman Assays

Student Name: 
Mehr Sahota
UCD Department: 
Mouse Biology Program Center for Comparative Medicine
UCD Mentor: 
Dr. Joshua Wood

A human and a mouse both have 3.1 billion base pairs which makes a mouse’s genome ideal for genetic research (Importance of Mouse Genome 2017). This project will include the comparison of two important pieces of biotechnology: Taqman assays and traditional PCR, in order to discover which is more cost efficient and accuracy of the screening methods when looking DNA insertions. Analyzing these screening accurate will help provide MBP with the most effective way to produce transgenic and Knockout mice thus furthering scientific research. The Taqman assay and traditional PCR will screen a large Knock in of GFP, a Knock in SNP (single nucleotide polymorphism), and a knock in of loxP/CRE which is a site specific recombinase consisting of around 30 base pairs (Valenzuela et. al., 2003). A Taqman assay is initially more expensive, but it is hypothesized to perform better than traditional PCR when working with small changes in the number of base pairs (Redig 2014). On the other hand, traditional PCR is better suited to find a large insertion than a Taqman assay (Valenzuela et. al., 2003). To investigate whether a Taqman assay or PCR is more effective in certain screening methods, time measurements and cost calculations must be taken into consideration for each of the methods. The quality of the screening must also be taken into consideration to ensure that quality is not being sacrificed for cost or time efficiency.

Thermal and kinetic characterization of β-glucosidase B mutants reveal structural and functional relationships

Student Name: 
Michelle Tong
UCD Department: 
Department of Chemistry
UCD Mentor: 
Justin B. Siegel

Predictive algorithms for mutant enzyme activity are important for facilitating enzyme selection in industrial projects. But, due to the lack of a large data set collected on mutant enzymes, current Rosetta programs are not accurate in predicting the kinetic activity and thermal stability of mutants. In order to expand the data set documenting mutant activity, the effect of BglB point mutations on its Michaelis-Menten constants and its thermal stability was looked at in this study. The research revealed an increase in the thermal stability of point-mutations when hydrogen bonds were added and a decrease in catalytic efficiency when packing around the side-chain was increased. By characterizing mutants based on their kinetic activity, binding affinity, thermal stability, and catalytic efficiency, this quantitative data will advance understanding of how enzyme structure relates to function.

Pages