2016 Research Project Descriptions

Interactions Between Candidatus liberibacter and Potato Virus Y in Russet Burbank Potatoes

Student Name: 
Alex Kuang
UCD Department: 
Plant Pathology
UCD Mentor: 
Dr. Clare Casteel

Liberibacter candidatus (LSO) is a bacteria causing extensive damage to potatoes. Potato Virus Y (PVY) one of the most prominent viruses affecting all potato crops grown in America. The insect vectors for both pathogens are often found on the same harvest at different times, and this study seeks a relationship between LSO and PVY in which one may be facilitating the other. If such a connection is found, treatment for one pathogen may remedy the other as well. Further research may lead to a lesser need for pesticides and an increased crop yield.

Examining Automated Methods of Boxing in EMAN for 3-D Reconstruction

Student Name: 
Alexander Xu
UCD Mentor: 
Dr. R. Holland Cheng

Selecting individual virus particles in micrographs, or boxing, is done frequently by hand, but the automation of this process would allow for greater efficiency during the process of 3-D reconstruction. Two methods of semi-automated boxing, autoboxing and autoboxing from references, were tested, both of which are two automatic boxing settings found as a part of the program Electron Micrograph Analysis (EMAN), version 1.9. Autoboxing from references appears to pick up slightly less undesirable particles, each of which were reviewed manually after automatic selection. After boxing, selected virus particles can then be used to form a 3-D reconstruction of the virus, whose accuracy is dependent on the quality of particles selected, and help with both virus analysis and virus-like particle (VLP) creation. Particles selected from autoboxing from references, however, appear to form less accurate reconstructions of viruses after 3-D reconstruction and 10 cycles of refinements.

The Synthesis of 2,3,4,5,6-pentafluorobenzene Diazonium Tetrafluoroborate and its Possible Function as a P-type Dopant=

Student Name: 
Alexandra Li
UCD Department: 
Chemistry
UCD Mentor: 
Dr. Mark Mascal

Recently, organic semiconductors have gained more attention as an alternative to inorganic semiconductors. Organic electronics are lighter, more flexible, and more low-cost than inorganic ones and have many possible applications, including thinner OLEDs (Organic Light Emitting Diodes) and cheaper solar cells. Organic polymers can become more efficient with the help of a more efficient dopant, an agent that allows a semiconductor to conduct current by either adding an isolated electron (n-type) or creating a hole in a sea of electrons (p-type). The goal of the project was to create an electrophilic diazonium salt in order to test whether it will be a more efficient p-type dopant than standard ones. A new procedure to make the diazonium salt was created, which led to successful synthesis of the compound, PFBDT. Critical data of the general chemical properties of PFBDT was provided to chemical engineers, who will perform further analysis of the compound’s role as a dopant.

Measuring and Predicting Syringe Hub Loss

Student Name: 
Allison Mayes
UCD Department: 
Mouse Biology Project
UCD Mentor: 
Dr. Kristin Grimsrud

The design of a conventional syringe includes a dead space between the needle and barrel of the syringe called the hub. This space collects liquid that once drawn up, cannot be plunged out. As a result, the substance remaining in the hub is inevitably wasted and difficult to account for. Little information is known about the true amount of hub loss that is expected from a given vial of controlled substances. We calculated and measured the hub volume using a variety of different syringes and vial volumes to determine the anticipated substance loss. Additionally, we tested the effects of interpersonal variability, number of syringes used per vial, volume drawn up in each syringe, and other real world conditions. Prior to finding the hub loss per vial, we calculated the hub volume of three different syringe and needle types. The two conventional 1ml syringe types used had means of 0.068ml and 0.066ml of hub loss. The hubless tuberculin syringe had a mean of 0ml of hub loss. After calculating the hub volume of each syringe, we tested expected hub loss from 10ml and 20ml vials. The trend of these tests showed an increase in hub loss as the number of syringes used increased. When 50 syringes were used to draw out half of a 10ml vial, there was a mean of 3.3ml of hub loss. When 10 syringes were used to draw out half of a 10ml vial, there was a mean of 0.5ml of hub loss. Of the recorded hub loss, the range of all datasets ranged from 0.1 to 2.9. These wide ranges display inconsistent amounts of hub loss per vial. The inconsistency may have been due to real world variables such as imprecise starting vial volumes, interpersonal variability, air bubbles, and unstable pressure within vials. The aim of this study was to establish a reasonable range of hub loss to monitor the usage of controlled substances. Based on our data, a reasonable range of hub loss depends on the number of syringes used to draw from a single vial, with the volume per draw not significantly affecting hub loss. As an example, a reasonable amount of hub loss from a vial when 10 syringes are used is 0.1ml-1.07ml. When 50 syringes are used, 1.99ml-4.53ml. The study may also be used to improve laboratory protocols so hub loss can be minimized.

A Study on the Effectiveness of Different Carbon Sources on Anaerobic Soil Disinfestation (ASD) and Characterization of Soil Fungi Associated with ASD

Student Name: 
Anne Chamberlain
UCD Department: 
Plant Pathology
UCD Mentor: 
Dr. Daniel Kluepful

Anaerobic soil disinfestation (ASD) is an environmentally sustainable alternative to soil fumigation that has been shown to be effective for controlling a broad range of soil phytopathogens, including the crown gall causing bacterial walnut phytopathogen, Agrobacterium tumefaciens. This research focuses on specific aspects of the ASD process, particularly on evaluating a variety of different agricultural waste products as carbon sources (C-sources), and using culture and molecular-based methods to identify microbes present in ASD treatments. 

Developing CAPS Markers for Genotyping Sunflower Mutant Populations

Student Name: 
Benjamin Caswell
UCD Department: 
Plant Biology
UCD Mentor: 
Dr. Stacey Harmer

While a great deal is known about the effects of plant circadian clocks on general biological functions, the molecular mechanisms behind this regulation are somewhat uncertain. Sunflowers with known point mutations were obtained, primers were designed, and restriction enzymes selected for each mutant. The primers were tested on wild-type DNA to determine whether they effectively amplified DNA fragments around the desired point mutations. Since the mutations are in genes associated with circadian clocks, this work will help facilitate experiments in this field in the future.

Exploration of a New Barium Antimony Selenide Compound as a Thermoelectric material

Student Name: 
Chang Hwan Kwak
UCD Department: 
Chemistry
UCD Mentor: 
Dr. Kirill Kovnir

Study in the field of thermoelectricity, the conversion of heat energy into electrical energy and vice versa, He explored a new barium antimony selenide compound, Ba6Sb7Se16.11, that has been previously determined to have a high potential as a thermoelectric material. Bryan became the pioneer to study the thermal conductivity, resistivity, and Seebeck coefficient of the barium antimony selenide compound. These components are required to calculate the figure of merit, which determines how good a thermoelectric material is. He synthesized the compound via high-temperature solid-state reactions, using a furnace and a Spark Plasma Sintering (SPS) device. With a Rigaku-600 Miniflex powder X-ray diffraction machine, the phase of the compound was determined. Bryan hopes to continue his research by keeping in contact with his mentor for further results. 

Understanding Crop Immunity for Increasing Crop Yields

Student Name: 
Christian Mojica
UCD Department: 
Plant Biology
UCD Mentor: 
Dr. Dinesh-Kumar

In order to defend itself from various pathogens, plants use various methods including ROS secretion by RbohD in order to eliminate pathogens. Various signaling cascades and protein interactions can lead to ROS secretion, yet only few have been studied. Some of the unstudied protein interactions are the ones between RLCKs and RbohD, yet here we provide this information through a method known as yeast two hybrid. These findings will highlight the direct roles that RLCKs play in ROS secretion.

Determining fertility in Mus musculus eggs for pronuclear injection should be optimized to prevent wastage

Student Name: 
Darren Tong
UCD Department: 
Mouse Biology Project
UCD Mentor: 
Josh Wood

The new CRISPR-Cas9 system, when combined with pronuclear injection, is capable of inducing specific mutations in mice. However, this process has a low mutation rate, around 15% [1]. The aim of this study is to determine if alterations to the timing of the pronuclear injections will improve the aforementioned mutation rate. Based on the results, it seems that around 32.8% of eggs thought to be unfertile are actually fertile. Because they are not used, the embryos are disposed of. This leads to a large amount of waste, and more importantly, a large amount of mice needed. These mice must be fed, and taken care of. Using embryos efficiently means that fewer mice will be needed as a lower total of eggs will be necessary. 

Distinguishing C. elegans chromosomes through amplicon size polymorphisms

Student Name: 
David Wang
UCD Department: 
Molecular and Cellular Biology
UCD Mentor: 
Dr. Ian Korf

The worm C. elegans is a transparent, free-living nematode that has shown to be an efficient and effective model organism. Since 65% of human disease genes have homologues on the C. elegans genome, it has great potential to be an invaluable research organism in the health and biomedical sciences. Researchers studying the C. elegans worm, however, have no cost-effective method of distinguishing homologous chromosomes. This becomes a problem when investigating its reproductive processes such as chromosomal loss in aneuploid individuals. In our project, we propose a cost-effective method of distinguishing homologous chromosomes through size differences on specific regions on the genome which are the result of indel polymorphisms. These size differences can be amplified through PCR and distinguished through gel electrophoresis. We analyzed a dataset of all indel polymorphisms referenced to the N2 strain on significant number of C. elegans strains. We were able to find six strain pairs which had size polymorphisms on all six chromosomes. Laboratory work confirmed our method as a viable, cost-effective solution to distinguishing homologous chromosomes. Our research aids in better understanding the reproductive processes of C. elegans worms which may increase our capacity to utilize it as an effective research organism.

The Influence of Surface Charge on Engineered Nanoparticle Delivery and Retention in the Respiratory Tract

Student Name: 
Delaney Buskard
UCD Department: 
Vet Med
UCD Mentor: 
Dr. Kent Pinkerton

Mesoporous silica nanoparticles (MSNs) are inorganic-based nanocarriers that have porous channels. Their channels can be filled with medicinal compounds and can be utilized to target various disease of the respiratory system. The purpose of the study is to determine what the MSNs do after being deposited in the lungs following a single, acute period of inhalation. Mice were exposed to aerosolized MSNs or filtered air through a nose-only exposure system for 5.5 hours. They were examined 0, 1, 7, and 21 days post exposure and bronchoalveolar lavage was performed. The lung tissue was sectioned and the bronchoalveolar lavage fluid was used to prepare cytospin slides. DAPI or Hematoxylin and Eosin (H&E) were stains that were used to detect the presence of MSNs or inflammatory or structural changes in the respiratory system, respectively. It was discovered that neither positively or negatively charged MSNs do not cause an inflammatory response in the respiratory systems of mice. It was also discovered that the positive MSNs have a better retention rate than the negative ones do. Over time, the negative ones were being released from the macrophages that engulfed them. Overall, MSNs show potential to be a good drug delivery system. 

Elucidating Maize Diterpene Metabolism: Site-Directed Mutagenesis of Kaurene Synthase 2

Student Name: 
Eileen Toh
UCD Department: 
Plant Biology
UCD Mentor: 
Dr. Philipp Zerbe

As the most harvested crop in the United States, maize (Zea mays) serves as a source of food, livestock feed, and biofuel. Pests, pathogens, and abiotic stresses contribute to significant crop losses, and the stresses, particularly drought, have only been exacerbated by climate change and rising global temperatures. All higher plants including maize produce an array of specialized metabolites that coordinate the plant’s interaction with the environment. Among these metabolites, diterpenes constitute the largest and most diverse group of compounds and have critical functions in the defense of maize against pest and pathogens. Recently, two diterpene synthase (diTPS) enzymes were identified in maize and shown to play a role in these stress responses: kaurene synthase 2 (KS2) and kaurene synthase 4 (KS4). While both proteins utilize the same substrate, ent-copalyl diphosphate (ent-CPP), which is produced by the class II diTPS Anther Ear2 (An2), the two enzymes produce different products. Investigation of the structural-functional differences of these two enzymes through expression in Escherichia coli (E. coli) and activity analysis with gas chromatography/mass spectrometry (GC/MS) enabled the identification of several amino acid residues that are important for the distinct enzyme functions. These findings contribute to our understanding of the chemical diversity of plant diterpene metabolism, and may be an opportunity for improving stress resistance in maize.

Investigating Simulator Sickness during an Immersive Virtual Reality Navigation

Student Name: 
Elli Stogiannou
UCD Department: 
Psychology
UCD Mentor: 
Dr. Arne Ekstorm

Simulator sickness is a condition that has emerged along with the advancements in the field of Virtual Reality (VR). Simulator sickness originates from the incongruity between the motion of the simulation and the motion of the performer in the simulation. Simulator sickness (SS), also known as cyber-sickness, is characterized by multiple symptoms, clustered in three general categories: symptoms related to nausea, oculomotor disturbances , and disorientation (Kennedy, Lane, Berbaum & Lilienthal, 1993). However, there is deficient insight into what causes SS, and how it can be effectively prevented. This research investigates the factors that serve as indicators as to whether someone is susceptible to SS and further explores the possible ways to prevent the appearance of SS related symptoms. Peripheral SS data from a navigation experiment using a head-mounted VR display and an omnidirectional treadmill was coded and analyzed to determine which measures, collected by the experimenters, might be able to predict subsequent attrition in the study. Results obtained show that experience with video games and treadmill proficiency, as rated by the experimenter during a training phase on the VR treadmill, are critical factors that may predict SS. Based on this analysis, if these factors are rated poorly, the probability of SS occurring is high. These findings have major implications for both the private sector, where companies are producing VR for commercial uses, and for the public sector. In the public domain, this research is beneficial for services using VR interfaces for educational purposes, such as Army Institutes, and it contributes to the field of spatial cognition research.

Potential Tyrosine Sulfation Sites in Cadherins

Student Name: 
Emily Yang
UCD Department: 
NPB
UCD Mentor: 
Dr. Grace Rosenquist

Tyrosine sulfation is a permanent posttranslational modification to a protein that regulates protein-protein interactions. This project focuses on predicting potential tyrosine sulfation sites in type II cadherins, transmembrane proteins dependent on calcium-ion binding. Evidence from statistical data, 3-D protein modeling, and conservation data supports that tyrosine sulfation could occur in type II cadherins. Two of the predicted potential tyrosine sulfation sites showed to contain known calcium-binding sites. However, a study has shown tyrosine sulfation to decrease calcium-ion binding in a particular peptide hormone. If this study is true for all proteins, the location of tyrosine sulfation sites near calcium-binding sites would be impractical. Further research would be needed to clarify if tyrosine sulfation actually occurs in cadherins and the effect it might have on cadherin function. 

Determining the role of endogenous auxin in sunflower heliotropism

Student Name: 
Faith Ajayi
UCD Department: 
Plant Biology
UCD Mentor: 
Dr. Stacey Harmer & Hagop Atamian

Sunflowers grow in response to sunlight in a movement called heliotropism, in which they track the sun. Their heliotropism has been proven to be regulated not by direct light stimulus, but by their circadian clock (Atamian et al. 2016). We now show the role of auxin, a naturally occurring plant growth hormone, in the clock’s regulation of sunflower heliotropism. Our experiments suggest that auxin is released at different times during the sunflower’s heliotropic cycle, causing stem elongation, which makes the plant grow in different directions.
 

Pages