2012 Research Project Descriptions

Investigating the Dof Gene in Tomato Plants

Student Name: 
Aditya Gupta
UCD Department: 
Plant Sciences
UCD Mentor: 
Dr. Diane Beckles

Aditya Gupta is researching the Dof gene in tomato plants. His research takes place in Asmundson Hall, which is one of the many buildings with the UC Davis Plant Sciences Department. His research will involve a series of tasks, such as amplifying the Dof gene and identifying the location where the gene is expressed on the tomato plant. Aditya’s research will eventually allow tomatoes to grow with 25% more yield and help tomatoes have higher nitrogen use efficiency. 

Understanding the Breakdown of Man Made Pollutants in Motile Bacteria

Student Name: 
Christie Ho
UCD Department: 
Department of Microbiology
UCD Mentor: 
Department of Microbiology

The lab seeks to understand the breakdown of manmade pollutants in motile bacteria, which are able to move towards the source of the pollutant and degrade the compound. Specifically, Christie is researching how a certain strain of bacteria can detect the presence of a specific compound, known as phenylacetate – a common compound found in many plastics and perfumes. Applications of this research include reducing the accumulation of environmental pollutants and minimize the effects of pollutants, helping preserve the planet. 

Detecting Viruses in Grape Leaves

Student Name: 
Divya Bhaskar
UCD Department: 
Plant Science
UCD Mentor: 
Vicki Klassen

Viruses in grapevine plants tend to be unevenly distributed which means a virus may be located in the basal (lower leaves) of the grapevine, or in younger leaves. This is a major problem for farmers all throughout California, because they do not know how many samples must be sent to the lab in order to be sure the results of the test are accurate.  The purpose of Divya’s project is to determine the incidence of false negatives in grapevines infected with one or more of the five viruses. Divya will collect infected plant samples on the UC Davis vineyards, and then she will process these samples in the lab using a variety of techniques and machines such as real-time PCR in order to extract the plants’ RNA. Divya’s project will occur in the Foundation Plant Science Department regarding viticulture under the guidance of researcher Vicki Klaasen.

Plant Mechanisms for Recognizing Invading Pathogens

Student Name: 
Kimberley Berg
UCD Department: 
Plant Biology
UCD Mentor: 
Dr. Dinesh-Kumar

For this project, Kimberley is working with Dr. Dinesh-Kumar in the Plant Biology department at the University of California, Davis. The lab studies the mechanisms by which plants recognize invading pathogens, initiate a signaling pathway, and execute a defense response. In general, the research aims to gain a better understanding of plant immunity. This information could be used to prevent plant disease in the agricultural market, promoting higher productivity of food products for the ever-growing human population.

Investigating Plant-Pest Interactions in Alfalfa

Student Name: 
Nikhil Jois
UCD Department: 
Department of Plant Sciences
UCD Mentor: 
Dr. Dan Putnam

Nikhil’s research involves alfalfa plants and plant-pest interactions, looking to control plant pests through the synthesis of novel phenolic compounds. It is currently hypothesized that these phenolic compounds found in plants deter pests by acting as prooxidants in the guts of the pests and causing cell damage. This work has a direct effect on forage production and pest control in an agricultural setting. The research may lead to further application in fruit and vegetable production as well

Determining the Effects of Environmental Tobacco Smoke on Rats

Student Name: 
Sarah Dukes-Schlossberg
UCD Department: 
Center for Health and the Environment
UCD Mentor: 
Dr. Kent Pinkerton

Sarah Dukes-Schlossberg is working at the Center for Health and the Environment at the University of California, Davis. She is working with Kent EPinkerton, Ph.D. of the School of Veterinary Medicine. She is researching the effects of environmental tobacco smoke (ETS) on the lungs of rats. Dukes-Schlossberg is comparing the lung tissues of spontaneously hypertensive rats (SHR) with those of control rats, SHR is a model for cardiovascular disease in humans. The results of the study will be used to better understand the effects of ETS on the lungs of humans and to develop better preventative measures and treatments.

Evaluating Symptoms of BRDC in Bovines

Student Name: 
Amy Kim
UCD Department: 
Department of Pathology, Microbiology, and Immunology
UCD Mentor: 
Dr. Laurel Gershwin

Kim is participating in a study on the bovine respiratory disease complex (BRDC), a deadly disease which costs the US cattle industry at least $3 billion dollars each year. Amy’s work in the lab, mainly involving virology, animal science, and molecular biology, will also include introducing different viruses to bovine steers for the evaluation of symptoms and for the search of traits that show resistance to this deadly bovine disease. In the end, not only will she will accumulate hours and hours of relevant lab experience, Amy will also help to find a cure to this costly disease

Determining the Structural Changes in Proteins During Staph Infections

Student Name: 
Andrew Kim
UCD Department: 
Chemistry
UCD Mentor: 
Dr. Donald Land

Andrew's project is to determine the structural changes of the protein responsible for staph infections when incorporated in lipid vesicles that mimic cell membranes.  After creating the vesicles, he determines if the lipids maintain their spherical shape and the protein structure using infrared spectroscopy, a technique that analyzes absorbed light.  This project will allow researchers to gain a better understanding of how proteins interact with cell membranes.

Determining the Affect of Diabetes on Rat Cells

Student Name: 
Eric Gu
UCD Department: 
Molecular Biosciences
UCD Mentor: 
Dr. Cecilia Giulivi

Examining how diabetes has affected the shape of certain parts of the cells of the rats. One group of rats has had a gastric bypass performed to delay the onset of diabetes, whereas the control group will develop diabetes normally without the surgery. The researchers will then harvest the cells from the heart and muscles of the rats after specific time intervals. Hopefully, by studying how the mitochondria are affected, the team will be able to provide more insight as to how diabetes affects the body.

Creating Molecular Pesticides Against Olive Fruit Flies

Student Name: 
Irene Lin
UCD Department: 
Department of Chemistry
UCD Mentor: 
Dr. Dean Tantillo

Creating a pesticide against the olive fruit fly, which damages olives and affects the quality of olive oil. Irene is working on this project by using computer software to build molecules and test how well they work. An effective pesticide would have a large positive impact on the California olive oil industry, which produces a majority of American olive oil.

Two parental and 16 F2 offspring nematode lines were studied using polymerase chain reactions, restriction enzyme digestions, and agarose gel electrophoresis. Analysis of the final banding patterns allowed for comparison of parental and offspring mitochondrial DNA.

Results showed that paternal mitochondrial inheritance did not occur in any of the offspring lines. Even so, the limited sample size makes further experimentation necessary in order to conclude whether ever paternal inheritance occurs. Even more analysis is required to determine whether nematodes’ amoeboid sperm is responsible for this phenomenon.

 

Determining the Effects of Allergens and Air Pollution on Mice

Student Name: 
Kelsey Green
UCD Department: 
Center for Health and the Environment
UCD Mentor: 
Dr. Kent Pinkerton

Studying the effects of allergens and pollution on mice. Since asthma is actually the body attacking itself through an immune response of antibodies to allergens, Kelsy will be able to dose mice with allergens and pollution to see their effects on the lungs. She will look at slides of exposed mice lungs with a microscope, analyze mice for indications of inflammation, and analyze a specific protein using immunohistochemistry to determine the damaging effects of air pollution in the lungs and how this may exacerbate allergic asthma. The results will be to see how these two factors of allergens and particulate matter affect those with asthma and the mechanism of asthma. 

Investigating and Characterizing Protein Synthesis in Cardiovascular Disease

Student Name: 
Kunal Shah
UCD Department: 
Neurology, Physiology and Behavior
UCD Mentor: 
Aldrin Gomes

Protein synthesis is an important facet of any biological process. In the cardiac muscle, it is especially important in determining the state and condition of the muscle. One cardiovascular condition that is closely related to protein synthesis is cardiac hypertrohy. Cardiac hypertrophy is a thickening of the heart muscle, which results in a decrease in size of the chamber of the heart, including the left and right ventricles. This hypertrophy is a common known response to the increased workload of the heart that is associated with hypertension. The larger heart and cardiac cell mass means that more protein is necessary to make up the additional mass of the heart. This project investigated which proteins are specifically synthesized for the sake of contributing to cardiac hypertrophy and exactly how the rate of protein synthesis increases when cells are induced with hypertrophy by the cancer drug Doxorubicin. Using Click-iT AHA Protein Labeling Kits, and SDS-PAGE Gels, we were able to determine that the rate of protein synthesis increases by an average of 30.26%. In addition, we determined that Meclofenamate sodium, a Non-Steroidal Anti-Inflamatory Drug (NSAID), decreased the rate of protein synthesis in cardiac cells while simultaneously decreasing protein degradation, an important step in determining how exactly NSAIDs affect cardiotoxicity and induce cardiovascular disease. 

Using Brachypodium as a Model for Drought Tolerance in Monocots

Student Name: 
Lucy Cui
UCD Department: 
Plant Sciences
UCD Mentor: 
Dr. Eduardo Blumwald

Lucy Cui is working with Professor Eduardo Blumwald in the Plants Science Department to genetically engineer crops to be more drought and salt tolerant.  A model plant, Brachypodium, is used in place of wheat, rice, corn, barley, oats, and other monocots, to determine which genes to turn on in order to prolong crop life and produce greater yields with less water.  Another model plant,Arabidopsis, is used to understand the effect of genes that control pH in dicots, or flowering plants, on plant development. With the growing human population and loss of quality agricultural land, it is important to create these crops in order to continually feed the demanding population despite the harsh, arid conditions and to efficiently use the limited amount of agricultural land.  

Exploring the Effects of Photodegradation on Soil Organic Matter

Student Name: 
Nelson Chou
UCD Department: 
Plant Sciences
UCD Mentor: 
Dr. Johan Six

Nelson Chou conducts a research project in the Department of Plant Sciences. The mentors of this young scholar are Dr. Johan Six and Dr. Sandra Yanni of the Agroecology Lab group. The objective the research is to explore the effects of photodegradation on littler and soil organic matter and its magnitude and rate in a California grassland. Photodegradation is an abiotic process in which sunlight, composed of both ultraviolet and visible light, degrades organic materials and can therefore facilitate subsequent microbial decomposition of organic matter. The carbon and nitrogen amounts of soil, grass litter, light effect on decomposition will be strategically analyzed. These understandings will form a basis of accurate prediction of annual decomposition rates of highly sun-exposed ecosystems such as the California grasslands. 

Synthesizing the Protein MUC1

Student Name: 
Nicholas Andrew
UCD Department: 
Department of Chemistry
UCD Mentor: 
Dr. Xi Chen

Synthesizing MUC1, an important protein in human epithelial cells that protects cells from external disease. This protein is overexpressed in the cancer cells of the colon, ovaries, lung, and pancreas. By synthesizing various forms of this protein, Nicholas and his co-workers hope to begin developing a vaccine that can target and help the immune system destroy cancer cells while leaving normal cells intact.

Pages