Comparing and Contrasting the Aspects of PCR and Taqman Assays

Student Name: 
Chelsea Mai
UCD Department: 
Mouse Biology Program Center for Comparative Medicine
UCD Mentor: 
Dr. Joshua Wood

The Mouse Biology Program is a production lab that specializes in producing transgenic and KO mice. To identify whether or not the initial founder mice contain the correct DNA modification, a screening process must take place (Garibyan, Avashia 2014). In retrospect, Sanger sequencing is a method that occasionally can give inconclusive results because the possibility of mosaicism arising due to the inherent multiple mutagenic nature of CRISPR modified genes. Taqman and PCR are more efficient in screening DNA, but due to slightly higher costs of Taqman, PCR vs. Sanger sequencing and the need for accurate data, traditional PCRs and Taqman assays require additional research to discover where they are best applied (Applied Biosystems). This project included the comparison of two pieces of biotechnology: Taqman QPCR and traditional PCR, in order to optimize the efficiency of the screening methods used to look at DNA insertions. Analyzing these screening methods helped provide MBP with the most effective way to produce gene edited mice thus furthering scientific research. The Taqman QPCR and traditional PCR screened a Knock In (KI) of SNPs and of loxP/CRE of the gene mir29a. By analyzing a gel and amplification curve of the screenings of this gene, it can be determined whether a Taqman or PCR is better suited for a particular method.This research contributed to enhancing the efficiency of this production lab. It is essentially a chain reaction: with better accuracy in screening DNA , MBP has more resources to produce gene edited mice at a faster rate thus providing research labs with more mouse models. By creating a library of mouse models, research labs looking for a certain gene function will have easy access to a mouse model with the desired gene function.